Global well-posedness for volume–surface reaction–diffusion systems
نویسندگان
چکیده
We study the global existence of classical solutions to volume–surface reaction–diffusion systems with control mass. Such appear naturally from modeling evolution concentrations or densities appearing both in a volume domain and its surface, therefore have attracted considerable attention. Due characteristic coupling, general is challenging issue. In particular, duality method, which powerful dealing mass conserved domains, not applicable on own. this paper, we introduce new family [Formula: see text]-energy functions combine them suitable method for systems, ultimately obtain under assumption called intermediate sum condition. For that conserve mass, but do satisfy condition, are shown quasi-uniform is, diffusion coefficients close each other. case dissipation, also show solution bounded uniformly time by studying system time-space cylinder unit size, showing sup-norm independently cylinder. Applications our results include boundedness arising membrane protein clustering activation Cdc42 cell polarization.
منابع مشابه
Global Well-posedness of Nls-kdv Systems for Periodic Functions
We prove that the Cauchy problem of the Schrödinger-KortewegdeVries (NLS-KdV) system for periodic functions is globally well-posed for initial data in the energy space H1×H1. More precisely, we show that the nonresonant NLS-KdV system is globally well-posed for initial data in Hs(T) × Hs(T) with s > 11/13 and the resonant NLS-KdV system is globally wellposed with s > 8/9. The strategy is to app...
متن کاملSharp Global Well - Posedness for Kdv and Modified Kdv On
The initial value problems for the Korteweg-de Vries (KdV) and modified KdV (mKdV) equations under periodic and decaying boundary conditions are considered. These initial value problems are shown to be globally well-posed in all L 2-based Sobolev spaces H s where local well-posedness is presently known, apart from the H 1 4 (R) endpoint for mKdV. The result for KdV relies on a new method for co...
متن کاملProbabilistic global well-posedness for the supercritical nonlinear harmonic oscillator
— Thanks to an approach inspired from Burq-Lebeau [6], we prove stochastic versions of Strichartz estimates for Schrödinger with harmonic potential. As a consequence, we show that the nonlinear Schrödinger equation with quadratic potential and any polynomial nonlinearity is almost surely locally well-posed in L(R) for any d ≥ 2. Then, we show that we can combine this result with the high-low fr...
متن کاملGlobal Well-posedness for Cubic Nls with Nonlinear Damping
u(0) = u0(x), with given parameters λ ∈ R and σ > 0, the latter describing the strength of the dissipation within our model. We shall consider the physically relevant situation of d 6 3 spatial dimensions and assume that the dissipative nonlinearity is at least of the same order as the cubic one, i.e. p > 3. However, in dimension d = 3, we shall restrict ourselves to 3 6 p 6 5. In other words, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Contemporary Mathematics
سال: 2022
ISSN: ['0219-1997', '1793-6683']
DOI: https://doi.org/10.1142/s021919972250002x